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SUMMARY 

The effect of varying the design of supersonic biplanes has been 
theoretically investigated to determine the configuration required 
for optimum aerodynamic performance. The investigation was chiefly 
concerned with biplanes having lower and upper airfoils of equal chord 
length and of triangular cross section. For such biplanes the changes 
in aerodynamic performance, resulting from varying the edge angles 
simultaneously and in pairs were calculated. Lift and drag coeffi- 
cients were also calculated for a biplane having convex sections and 
for a configuration employing a small shock-reflecting surface in 
place of the lower airfoil. 

The theoretical aerodynamic coefficients of the biplanes inves- 
tigated are compared with those of an airfoil with diamond profile 
and with those of a thin flat plate. The variation of the center of 
pressure with angle of attack and the relative loading of the airfoils 
was also investigated for several biplanes. For one biplane of 
triangular cross section, the variation of the aerodynamic coefficients 
with flight Mach number was calculated. A discussion of the effects 
of friction drag on the relative performance of biplanes and single 
airfoils is included. 

The calculations show that, in a frictionless supersonic air 
streamj biplanes of triangular cross section yield higher lift-drag 
ratios than diamond airfoils of the same thickness ratio and that, 
for high lift coefficients, unsymmetrical biplanes yield higher lift- 
drag ratios than symmetrical biplanes. When friction drag is con- 
sidered, the calculations show that biplanes with the lower airfoils 
thicker than the upper airfoils should have higher lift-drag ratios 
than symmetrical biplanes. 

For each of the biplanes an optimum spacing was found at each 
Mach number. Although the performance of the biplanes for this optimum 
spacing was found to be improved over that of a diamond airfoil, the 
calculations showed that with a constant biplane spacing this improve- 
ment was maintained over only a limited range of Mach numbers near the 
optimum. 
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INTRODUCTION 

At supersonic speeds in a frictionless fluid the aerodynamic 
shape with the least drag and the greatest lift-drag ratio is the 
thin flat plate. Practical airfoils, however, must have finite 
thickness and consequently will have lower lift-drag ratios than the 
thin flat plate. For a given finite thickness ratio the lowest drag 
and the greatest lift-drag ratio are obtained with airfoil sections 
having a diamond profile (fig. 1(a)). The aerodynamic performance 
of a diamond airfoil, however, may theoretically he exceeded by means 
of a proper superposition of two airfoils of triangular cross section 
(fig. 1(h)). The possibility of using such arrangements to approx- 
imate the aerodynamic characteristics of a thin flat plate was sug- 
gested "by Busemann in reference 1. An analysis of such biplanes was 
undertaken by Walchner in reference 2. As a first approximation, 
the pressures on the Inner surfaces of certain properly shaped 
biplanes were shown to be mutually canceled and onlj the outer two 
surfaces were shown to contribute to the wave drag. These two sur- 
faces are equivalent to those of a thin flat plate. Busemann"s 
approximation, however, assumes that the expansion around the Inner 
corners (fig. 1(b)) takes place across a single discontinuity plane; 
whereas the expansions actually occur through a wedge-shaped region. 
A part of the expansion wave from each of the inner corners Is thus 
intercepted by the rear surface of the opposite airfoil and the rest 
passes outside the biplane.  (See fig. 2.) The pressures are there- 
fore not equalized internally and transition to free-stream condi- 
tions must take place externally by means of compression shocks. 
These transitions represent energy losses that appear as Increases 
in the drag of the biplane arrangements. 

Walchner (reference 2) showed that the expansion waves, can be 
completely contained within a biplane if the trailing-edge contours 
are so curved that the rarefaction waves are not" "reflected from the 
surfaces. The required contour, which has zero trailing-edge angles, 
is Incompatible with the strength requirement of practical wings. 
Walchner integrated the theoretical pressures over the surfaces of 
two possible biplane arrangements to determine bhe extent to which_ 
the drag and lift coefficients are altered when nonzero edge angles 
are maintained. He Concluded that when friction drag was considered 
these biplanes were approximately equal in drag to a biconvex airfoil 
of the same thickness as one of the airfoils of the biplane. 

An experimental investigation of a symmetrical supersonic biplane 
was reported by Ferri (reference 3). The optical observations reported 
indicate that the starting characteristics of supersonic biplanes are 
in many ways similar to those of a convergent supersonic diffuser. 
When the speed of the airstream past the biplane was increased from 
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subsonic to supersonic values, with the spacing between the two air- 
foils set at the theoretical optimum value, the theoretical shock 
configuration was not obtained. Instead, fluctuating shock configur- 
ations were observed until the design velocity was reached; then a 
shock wave curved inward from the leading edges was observed to span 
the entrance between the two airfoils. When the spacing between the 
airfoils was slightly increased the expected intersecting oblique 
shock pattern appeared and remained when the spacing was again reduced 
to optimum. Ferri found that when the curved-shock configuration was 
present the drag of the biplane was about six times as great as when 
the theoretically expected shock configuration was attained. A 
probable solution to the problem of reaching optimum operating condi- 
tions is a starting rocket to accelerate the aircraft to or beyond 
its design Mach number. For wind-tunnel investigations, of course, 
the spacing may be made variable and adjusted to its optimum value 
only after the design Mach number is attained. 

The present theoretical investigation was undertaken to deter- 
mine the effect of design variations and operating variables on the 
aerodynamic performance of biplanes. The design variations for 
triangular-section biplanes included (l) variation of all edge angles 
simultaneously, (2) variation of the edge angles of the lower and 
upper airfoils separately, and (3) separate variation of the trailing- 
edge angles. Lift and drag coefficients were also calculated for a 
biplane having circular convex sections and for a configuration 
having a smell shock-reflecting surfaoe in place of the lower airfoil. 
The calculated aerodynamic coefficients are compared with those of a 
diamond airfoil and vith a thin flat plate. The variation of the 
center of pressure with angle of attack was investigated for a 
symmetrical and an unsymmetrical biplane, and the loading of these 
biplanes was compared with that of a diamond airfoil. For one 
biplane, the variation of aerodynamic coefficient with Mach number 
was also determined. The effect of friction drag on the relative 
performance of the biplanes and single airfoils is discussed. 

DESCRIPTION OF BIPLANE ARRANGEMENTS 

The biplanes investigated are chiefly of the type shown in fig- 
ure 1(b), that is, biplanes consisting of two triangular-section 
airfoils of equal chord length. The terms used in discussing such 
biplanes are defined in the figure. The corresponding ten&3 for 
comparison with the diamond airfoil are defined in figure 1(a). From 
the definition of thickness ratio, a diamond airfoil with the same 
edge angle as the thinner of the airfoils of the biplane has the same 
thickness ratio as that biplane. 
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For optimum performance, the spacing between the two airfoils 
of a triangular-section biplane (d./c)fyo^    is determined by the 
requirement that the shocks from the leading edges shall intersect 
the surface of the opposite airfoil at the Inner turning corner. 
This optimum spacing varies with free-stream Mach number MQ and 
with leading-edge angle 0^, as shown in figure 3. The variation 
of optimum spacing with angle of attack was found to be slight and 
is not indicated on this figure. Optimum spacing was assumed through- 
out the calculations with the exception of those reported in the dis- 
cussion of the effect of varying the Mach number with constant spacing. 

Whether the biplane was rotated ae a whole about a fixed axis or 
each airfoil was separately rotated about Its leading edge, as *n fig- 
ure 1(b)}  was found to be immaterial in determining the effect of angle 
of attack on biplane performance. The configuration with leading edges 
on a common vertical line was assumed in the calculations. 

METHOD Of CALCULATION" 

The following symbols are used in the discussion and the figures: 

c    chord -• - 

Cj)   drag coefficient for nonviscous flow 

Cj, £      friction-drag coefficient 

CL    lift coefficient 

Cn   pitching-moment coefficient around leading edge 

CD    center-of-pressure coefficient, e/c 

d     distance between airfoils of a biplane 

d/c   biplane spacing 

e    distance from pitching-moment axis to center of pressure 

1 

z=ä>3 

M    Mach number 

P    total pressure 
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p static pressure 

t maximum thickness (of thinner airfoil for "biplanes) 

t/c thickness ratio 

a angle of attack 

ß Mach angle 

7 ratio of specific heats ' 

0 edge angle 

}\ angle between local flow direction and free-stream flow 
direction 

cp angle between shock and flaw direction ahead of shock 

*g angle through which flow is turned (Prandtl-Meyer theory) 

' Subscripts: 

U upper 

L lower 

0 free-stream 

1 leading 

2 trailing 

opt   optimum values 

An analysis of the flow through triangular-seotion supersonic 
biplanes is presented in the appendix. Such an analysis shows that 
as the air passes between the airfoils it is first abruptly com- 
pressed by the deflection due to the leading edges and then expanded 
around the inner turning corners. The aerodynamic coefficients of 
the biplane are obtained by determining the pressure distribution on 
the surfaces resulting from compression and expansion. The expansion 
process is readily followed with the help of the Prandtl-Meyer theory 
of flow around corners (reference 4). This theory gives the ratio of 
static to total pressure p/P, Mach number M,  and Mach angle ß 
as functions of the angle through which the flow is turned ?. These 
relations, where ¥ is taken equal to 0 for M = 1.0, are plotted 
in figure 4. 
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The compressive turning at the leading edges takes place through 
oblique shocks; the direction of these shocks is determined by the 
Mach number of the free stream and by the angle of inclination of the 
biplane surfaces to the free-stream direction. Tho pressure resulting 
from such compressive turning may be determined from oblique-shock 
rolations. The Prandtl-Meyer'relations, however, give sufficiently 
good approximations to pressure resulting from compressive turning if 
the shocks are not too intense; that is, if the process is approxi- 
mately isentropic. For the angles of inclination and the Mach numbers 
considered in the present investigation, errors resulting from the use 
of the Prandtl-Meyer theory in place of exact oblique-shock relations 
to determine pressures resulting from compressive turning were found 
to be insignificant. This theory was therefore utilized for conven- 
ience in calculation to determine all pressures as well as Mach lines. 
The angles between the shocks and fche flow directions, which determine 
the optimum distance between the airfoils, differed considerably from 
the Mach angles assumed by the Prandtl-Meyer theory and were therefore 
obtained from exact oblique-shock relations. 

The pressure distribution on the biplane surfaces may be obtained 
either by graphical or by analytical integration. Eecause the inte- 
gration process is rather laborious, an analytical method suitable for 
solution with computing machines was developed. This method is des- 
cribed in the appendix. 

An example of the graphical determination of pressure distribu- 
tions is given in figure 2. The angle $ Jhat determines the pres- 
sure ratio p/P, the Mach number M, and the Mach angle ß is 
indicated in each region together with the_ angle between the local 
flow and the free-stream flow 7s. The continuous-expansion regions 
have been replaced by successions of Mach lines, each of which turns 
the flow through an angle of 1°. The expressions giving the inter- 
cepts of these Mach lines on the biplane surfaces in terms of local 
Mach angles are given in the appendix. 

In the calculation of the aerodynamic, coefficients, the following 
simplifying assumptions were made:  (l) The continuous-expansion 
regions can be replaced by a succession of-Mach waves, each of which 
expands the flow through an angle of 1°; (2) these Mach waves are 
abruptly deflected at a definite point in the interaction region 
(see appendix); and (3) additional drags due to viscosity will be 
additive. With regard to the first two assumptions, it was felt that 
the small additional accuracy to be expected from assuming smaller 
expansion intervals or plotting the interaction region moro carefully 
did not warrant the additional labor required. The third assumption 
implies that the calculated values of C-^ -are correct for viscous, 
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as veil as nonviscous, air flow and that the friction-drag coefficient 
Cjj f    may be experimentally determined from the difference between the 
total drag coefficient and the drag coefficient calculated for non- 
viscous flow C-Q. 

At high Mach numbers the ratio of static to total pressure p/P 
becomes very small (fig. 4) and the differences between p/P on the 
front and rear or the top and bottom surfaces of an airfoil, which 
determine the aerodynamic coefficients, are of the order 10  for 
Mach numbers greater than about 3.5. For high Mach numbers, there- 
fore, the accuracy of calculated aerodyn&Tiic coefficients is chiefly 
limited by the low values of p/P, For this reason, few calculations 
were made for MQ>3.0. 

If the thickness ratio of the airfoils is very small (values 
of 9<4°), the variation of C^ and CD of a supersonic biplane 
with Mach number and angle of attack may be determined approximately 
by means of simple equations given in reference 5. These equations 
were derived on the assumptions that the expansion around the inner 
corners takes place across a single discontinuity plane, that the 
variation of pressure with flow angle is linear, and that there is 
no deflection of the compression and expansion waves at their inter- 
section points. If the biplane spacing is optimum, the equations 
reduce to those obtained for a thin flat plate. 

EFFECT OF VARYING EDGE ANGLES 

The effect on drag and lift-drag ratio OJJC-Q    of varying the 
edge angles 6    of triangular-section biplanes is shown in figure 5. 
The values shown are for the optimum spacings (d/c)op^. presented 
in figure 3. Figure 5(a) shows the effect of simultaneously varying 
all edge angles. Calculations were made for three free-stream Mach 
numbers MQ and for angles of attack a of 0° and 3°. For MQ = 1.6 
the calculations were carried out only for 0<7° because the flow 
between the airfoils becomes subsonic when 0>7.3° and the 
supersonic-biplane theory no longer applies. The lift-drag ratio 
CL/Cj) is seen to be almost independent of Mach number for the optimum 
spacings assumed. 

The effect of varying only 0y while. 0L is held constant at 
10° is shown in figure 5(b). Curves are shown for values of MQ 

of 2.0 and 3.0 at an a of 0° and for an MQ of 3.0 at an a of 3° 
For these conditions C^/Cj, reaches an optimum for a % of about 
5°. Lift is obtained at an a of 0° when 8y is somewhat smaller 
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than &i   "because an unsymmetrical flow exists between the airfoils, 
which results in a greater average pressure on the upper airfoil than 
on the lower airfoil. As 0y is reduced below the optimum, the drag 
begins to increase more rapidly than the lift and CL/CD again drops. 

The effect of increasing 0L while holding &\j    constant is 
shown in figure 5(c) for a 9XJ   of 7°. Curves are drawn for an Mo 
of 3.0 and for an a of 0° and 3°. For a. = 3°,  CT/CD remains 
almost constant for • 0L < 10°, and decreases for larger 0]> For 
a a  0°, CIJ/CD rapidly increases as the value of 9    increases to 
8.5° and then drops slightly for larg&r angles. 

The effect of varying the value of 02 while 0].  is held con- 
stant at 10° is shown in figure 5(d). The optimum value in this case 
again is the result of opposing tendencies: As 0g decreases, the 
expansion around the inner corners becomes less and the average pres- 
sures on the rear inner surfaces tend to increase. The expansion 
waves from the inner corners, however, are intercepted by increasingly 
larger portions of the inner rear surfaces, and lower pressures toward 
the trailing edges result. Because the' first tendency lowers drag and 
the second tendency increases drag, an optimum value of 02 results. 

COMPARISON OF POLAS DIAGRAMS 

For comparison with the diamond airfoil.and with the thin flat 
plate, two biplanes were chosen from figure 5 and their drag and lift 
coefficients were calculated for several additional angles of attack. 
The results are plotted in figure 6. Comparisons are made at free- 
stream Mach numbers MQ - of 2.0, 3.0, and 4/0 in figures 6(a), 6(b), 
and 6(c), respectively. The biplanes selected were a symmetrical 
biplane with all edge angles 9  = 7° and an* 'unsymmetrical biplane 
with öy = 7° - and 0J, = 10°» The curves show that both biplanes 
give greater lift for a given drag than a diamond airfoil of the samo 
thickness ratio for all values of a and Mo considered. For the 
biplanes, the symmetrical configuration gives greater lift for a given 
drag over..the lower range of CL; whereas for high values of CL the 
unsymmetrical configuration has lower drag than all others including 
the thin flat plate.  (For an MQ of 4.0 it was considered unnecessary 
to calculate the polar diagram for the symmetrical biplane, inasmuch as 
the relative position of the four configurations considered seoms to be 
insensitive to Mach number.) 
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The comparisons presented in figure 6 indicate that the unsym- 
metrical biplane has lower drag than the symmetrical biplane for high 
values of C^. Tho maximum value of C^/Cp obtainable (slope of a 
straight line from the origin tangent to the polar curve), howevex1, 
is somewhat less for the unsyuaaetrical biplane. A polar curve for a 
biplane with a 6g of 7° and a (%_,    of 13° was calculated to deter- 
mine whether this maximum value of C^/Cj)    is reduced or increased 
by further increases in the values of 0L (fig- 7). The trend toward 
greater values of C^/CD at high values of C^ is continued but the 
maximum, value of C^/Cp is reduced as the value of 8^ is increased. 

The same three biplanes are compared in figure 8 with diamond 
airfoils of three thickness ratios and with a thin flat plate.  In 
this tigure C^/Cp (which is substantially independent of MQ) is 
plotted against a. The symmetrical biplane and the biplane with a 
©L of 10° have maximum values of C^/Cp greater than the symmetrical- 
diamond airfoil with values of a of 5°; that is, for a given value 
of t/c the biplanes in frictionless flow have considerably greater 
lift-drag ratios than the symmetrical-diamond airfoil. 

VARIATION OF CENTER OF PRESSURE 

In order to determine the center of pressure of the biplanes 
compared in figure 6, their pitching-moment coefficients about the 
midpoint between the two leading edges were calculated. The center- 
of-pressure coefficient was then obtained from the relation 
Cp = e/c = Qm/CL, where c is the chord length and e is the dis- 
tance from the pitching-moment axis X to the center of pressure. 
(See fig. 9.) This ratio is plotted against a for the two biplanes 
of figure 6 and for the diamond airfoil of the same thickness ratio. 
The values of CL were found to be substantially independent of Mach 
number for the biplanes as well as for the diamond airfoil. The value 
of C-p varies widely with a for the uneymmetrical biplane but is 
almost constant for the symmetrical biplane and for the diamond airfoil. 

EFFECT OF VARYING MACE NUMBER WITH CONSTANT BIPLANE SPACING 

The results presented thus far have dealt with biplanes of optimum 
spacing, which varies only slightly with angle of attack but quite 
widely with free-stream Mach number. Ferri (reference 3) found that, 
when the biplane spacing was less than or greater than optimum, the 
observed flow patterns differed greatly from those theoretically pre- 
dicted. The high pressure beyond the intersection of the oblique 
shocks (fig. 2) was apparently transmitted through the boundary layer 
and resulted in a flow separation either ahead of or after the inner 
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turning corners, depending on -whether the spacing was less than or 
greater than optimum. The oblique shocks did not strike the wing sur- 
faces "but were reflected as expansion waves from the separated fluid 
layer near the surfaces. The experimentally determined lift and drag 
coefficients were nevertheless found to vary with biplane spacing much 
in the manner predicted by theory (see fig. 55, reference 3) although 
the experimental variations were less than the theoretical. 

Calculations were made to determine, at least qualitatively, the 
effect of varying the value of MQ while a constant value of d/c 
was maintained. The biplane selected was the unsymmetrical one with 
By = 7° and 8^ = 10°•  (The analytical integration method described 
in the appendix applies only when the shocks intersect the biplane 
surfaces at the inner turning corners; consequently, the pressure dis- 
tributions for nonorrbimum spaclngs had to be determined graphically.) 
The variation of drag coefficient CJJ, center-of-pressure coefficient 
Cp, and lift-drag ratio CL/CD with Mach number for this biplane is 
shown in fig-ore 10. The biplane spacing d/c was held constant at 
a value of 0.15, which is optimum for this biplane at a value of 
MQ of 3.0.  (See fig. .3.) Calculations were made for values of a 
of 3° and 5°. The curves show that, for these values of a, C^/Cj) 
remains greater than that of the diamond airfoil of the samo thickness 
ratio for a range of Mach numbers between 2.7 and 3.4. Inasmuch as 
experimental variations were less than theoretical (reference 3), the 
actual range of Mach numbers for which C^/C-p remains greater for the 
biplane than for the diamond airfoil will probably be wider than that 

• indicated in figure 10. " 

RELATIVE LOADING- OF BIPLANES AND DIAMOND-PROFILE AIRFOILS 

Because the internal pressure in a biplane is considerably 
greater than atmospheric, the upper airfoil of a biplane may be 
expected, for a given lift, to be more heavily loaded than a s Ingle 
airfoil. The relative loading is shown in figure 11. The leading 
factor A(p/P) plotted in this figure is the difference between the 
average ratio of static to total pressure on the upper and lower 
surfaces of the airfoils. This factor is plotted against lift coef- 
ficient C^ for a symmetrical biplane, an unsymmetrical biplane, 
and a diamond airfoil for free-stream Mach numbers MQ of 2.0 and 
3.0. At the lower value of MQ,  the unsymmetrical biplane is more 

heavily loaded; whereas at an MQ of 3.0 the two biplanes are about 
equally loaded. Both biplanes are more heavily loaded than the diamond 
airfoil of equal thickness ratio except at very high lift coefficiGnts. 
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The heavier loading of the "biplanes, however, is probably no serious 
disadvantage; it should be feasible in practice to strengthen the 
biplanes by fastening the two airfoils together in some manner. 

EFFECT OF FRICTION 

Inclusion of friction effacts should somewhat reduce the rela- 
tively greater lift-drag ratio of biplanes as compared with single 
airfoils, inasmuch as the additional drag due .to friction will be 
about twice as great for the biplanes. No adequate data on friction- 
drag coefficients Cj) f    at supersonic speeds are yet available. The 
magnitude of the CD f that will reduce the lift-drag ratio of the 
biplane to that of the diamond-profile airfoil may be estimated. If 
CD f is assumed to be twice as great for biplanes as for single 
airfoils, the diamond airfoil will have a lift-drag ratio equal to 
that of a biplane when 

°L,b CL,d 
cD,b + 2cD,f  °D,d + cD,f 

or when 

n CL,b Cp.d " cL,d cD,b 
%?  "     2CL,d - 0^ 

where subscripts b and d indicate the biplane and the diamond 
airfoil, respectively. A few limiting values of Cj) f were calcu- 
lated from the curves of figures 6 and 7. Lift coefficient Cx, and 
drag coefficient for frictionlese flow Cj) were calculated for the 
points of maximum CL/CJJ for values of MQ • of 2.0 and 3.0. The 
results appear in the following table: 
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(deg) 
CL/CD 'D,f 

M0 B 2.0 

Diamond airfoil, 8.15 0.0164 
0=7° 

Biplane,  8y = 7° 7 14.7 .0061 0.0037 
Biplane, % = 7° 10 14,0 .0092 .0063 

Mr 3.0 

Diamond airfoil, 
6  = 7° 

Biplane,  % = 7° 
Biplane,  0^. = 7° 
Biplane,  0g. =? 7° 

0.0017 
.0042 
.0330 

An examination of this table shove that a greater value of CJJ %    is 
allowable for low values of MQ and for largo values of 0^. These 
results indicate that, for a given value of t/c,  the unsyrametry of 
the "biplane should be increased the higher the friction coefficient 
encountered. 

Similar calculations may be made to determine the limiting values 
of CD f above -which the unsymmetrical biplane has a lift-drag ratio 
higher than that of the symmetrical biplane.' Calculations using the 
same values of C^ and Cj> as in the table show that for an MQ 

of 2.0 the biplane with 0L = 10° will yield a lift-drag ratio equal 
to that of the biplane with all edge angles .7° when. Cp f    oquals 
0.00024. At an MQ of 3.0, the biplanes with values of 0L of 10° 
and 13° will equal the lift-drag ratio of the symmetrical biplane when 
CJJ f    is 0.00018 and 0.00041, respectively. These low values of CD f 
indicate that under actual test conditions the unsymmetrical configur- 
ation will probably attain a higher lift-drag ratio than the symmetri- 
cal configuration. 

OTHER TYPES OF BIPLANE 

The use of circular convex sections in place of the triangular- 
section airfoils greatly increased the drag for a given thickness 
ratio t/c. For an MQ of 3.0, an a of 0°, and a t/c of 0.088, 
for example, the drag coefficient Cp with circular convex seotions 
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was found to be 0.0443 as compared with 0.0048 for the triangular- 
section biplane of the same thickness ratio. A biconvex single airfoil 
of the same thickness ratio has a Cj) of 0.0146. Ho further calcu- 
lations for curved-section biplanes were undertaken. 

Another method of obtaining ft partial pressure cancellation con- 
sisted in replacing the lower airfoil with a small shock-reflecting 
surface, (See fig. 12.) For this arrangement, CL and CD were 
estimated by means of graphical integration for an MQ of 2.0, an 
a of 3°, and edge angles 9    of 7°. As expected, the results are 
dependent on the- ratio of the chord of the shock-reflecting surface 
to the chord of the airfoil L/c. The values obtained are: 

L/c CD CL/C; 

0.25 0.031 4.67 
.15 .029 5.58 
.10 .028 5.69 
.05 .027 5.58 

Comparison with figure 8 shows that CL/CJJ does not approach the 
value obtainable with a diamond-profile airfoil. The drag coeffi- 
cient, moreover, is about twice as great as for two symmetrical air- 
foils. For these reasons and because of its structural disadvantages, 
this scheme is probflbly of no practical interest» (For the airfoil 
of fig. 12 without the shock-reflecting surface, Cp is 0.028 and 
C
L/

C
D 

is 5.20.) 

CONCLUSIONS 

From calculations of the aerodynamic coefficients of biplanes 
in a frictionless supersonic air Btream, the following conclusions 
may be drawn: 

1. For any given lift coefficient, a triangular-section biplane 
has lower drag than a diamond airfoil of the same thickness ratio. 

2. When all edge angles are simultaneously varied, the lift-drag 
ratio increases as the angles are decreased. 

3. With an upper airfoil of constant thickness, the maximum lift- 
drag ratio obtainable decreases as the thickness of the lover airfoil 
is increased. For low angles of attack, however, the lift-drag ratio 
of a biplane may be increased by making the lower airfoil thicker toan 
the upper airfoil. If the lower-edge angles are too greatly increased, 
an optimum value is passed and the lift-drag ratio drops. 
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4. The. lift-drag ratio of biplanes may be slightly improved by 
making the trailing-edge angles somewhat smaller than the leading- 
edge angles. -*-:-:-  .•-..• 

5. The variation of center of pressure with angle of attack is 
considerably greater for unsymmetrical than for symmetrical biplanes. 

Inclusion of friction effects soir.awhat modifies the foregoing 
conclusions because the additional dreg duo to friction will be about 
twice as great for biplanes as for single airfoils. Calculations 
indicate that, as friction-drag coeffj.cient___increases, the thickness 
ratio of the lower airfoil of a biplane should be increased to main- 
tain lift-drag ratios higher than those of symmetrical-diamond airfoils 
and that unsymmetri-cal biplanes will probably yield greater lift-drag 
ratios than symmetrical biplanes in frictional flows. 

Certain practical disadvantages connected with biplanes should 
be considered in evaluating their practical usefulness. The spacing 
between the airfoils must be made variable if optimum performance is 
desired over a wide range of flight velocities. Over a certain 
limited range of flight Mach numbers, however, the biplane would 
maintain a higher lift-drag ratio than the .diamond airfoil of the _ 
same thickness ratio. ..The greater loading of biplanes for a given 
lift can probably be dismissed as unimportant because it should be 
feasible to increase their strength by fastening the two airfoils 
together. 

Flight Propulsion Eesearoh Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, December 10, 1946. 
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APPENDIX - DETERMINATION OF AERODYNAMIC 

COEFFICIENTS OF SUPERSONIC BIPLANES 

By use of the notation of figure 13, the pressure distributions 
over the "biplane surfaces may "be determined as. follovs: Upon entering 
field (l, U) the air Btream is turned through an angle (0-^ y + a) 
from the free-stream direction. The transition to field (l, U) takes 
place through, a compression shock. The angle cpj_ TJ that this shock 
makes with the free-stream direction may be determined from oblique- 
shock relations. Similarly, upon entering field (l, L) the flov is 
turned through an' angle (©•]_ L - cc),     also in a compressive sense, 
and the oblique shock makes an angle qp-j_ -^ with the free-stream 
direction. The resulting pressures in fields (1, U) and (1, L) may 
be obtained either from oblique-shock relations or, if  (01,TJ + cc) 
is fairly small, they may be closely approximated by the Prandtl-Meyer 
relations for flow around a corner. The Prandtl-Meyer relations are 
plotted in figure 4, Thus, for example, if Mg is 2.0, 6j_ y is 7°, 
and a is 3°, p^ y/P is obtained by subtracting 10° from the turning 
angle * corresponding to an MQ of 2.0; thai is, 
¥]_ u = 26.3° - 10° = 16.3°;  p3_ -j/P = 0.218. 

At the intersection of the two shocks from the leading edges, 
both shocks are deflected and the flow passes into a common field 
(XT, L). The angle cp2 y that the shock makes with the flow direction 
l.n field (l, U)  is now determined from the known M^ g and the angle 
of deflection through the 3hock. The angle of deflection, in turn, 
1a determined by the requirement of a common flow direction in 
field (U, L). This common direction can be attained only if the sum 
of the deflections through the two upper shocks equals the sum of the 
deflections through the two lower shocks. The deflection through the 
second upper shock is therefore (0^ ^ - a) degrees and through th.9 
second lower shock 1B (0^ JJ  +• a) degrees. The flow in field (U, L) 
has been turned (ö]_ u f a + 0-j_ ^ - a) degrees in a compressive sense 
and the conditions in field (U, L) can now be road from figure 4. 
Although the turning is compressive through both shocks, its direction 
is reversed and the actual flow direction in field (U, L)  is 
AU,L = (01,U 4- a) - (0I,L - a) = (0i,u - 0I,L + 2a) degrees from the 
free-stream direction. 

In passing into field (2, U) the flow is expanded ' 
(02 j - a + ^ j) degrees from its direction in field (U, L). The 
flow in field (2, L)  is expanded (02 L +• a - Ay L) degrees. The 
expansions take place through'a wedge-shaped region with limits 
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determined by the values of ß corresponding to the conditions before 
and after the expansion. The conditions are again obtainable from 
figure 4 because the turning angles are known. 

The expansion waves are mutually deflected in the region of inter- 
section. The angles that the bounding Mach lines beyond the inter- 
action zone make with the flow direction are again determined by the 
conditions before and after the expansions. The angle of the line 

closing off field (2, U), for example, is [siir1(l/M2 y) f (e2 y - a)J . 
The angle of the line terminating the upper expansion region is deter- 
mined by the number of degrees from field (2, U) that the flow is 
turned by the expansion wave. Each expansion wave is reflected from 
the surface and passes outside the airfoils. The four shocks ema- 
nating from the two trailing edges bring the entire flow pattern back 
to free-stream conditions at infinity. The angles of these shocks 
can be determined from this requirement (that is, free-stream condi- 
tions at infinity), but this determination is unnecessary to find the 
aerodynamic coefficients, for conditions beyond the trailing edges 
have no effect on the biplane. 

In order to integrate the pressures over the airfoil surfaces, 
the continuous expansion waves are replaced with a succession of .Mach 
waves, each of which turns the flow through a small angle &9. 
Throughout this investigation the value A0 was fixed at 1°. The 
problem of integration is obviously simple except over the portions 
of the inner rear surfaces that intercept the expansion waves from 
the opposite airfoil. This region may be treated analytically, by 
obtaining expressions giving the point at which each of the succession 
of Mach waves intersects the opposite surface. A summation process 
can then be made to determine the drag and lift forces contributed 
by these regions. 

The relations between the angles of the Mach lines and their 
intercepts on the airfoil surfaces may be deduced from the sine law. 
The assumption is made that the bending of each Mach line through the 
interaction region takes place.entirely at the point where it inter- 
sects the corresponding Mach line emanating from the opposite airfoil, 
The following expressions are obtained by using the notation of fig- 
ure 14: 

= .C1,U  ain (gfr^j - elfU - a) sin (<y2)U - e1>XJ - a) 
Hj " cos 01,u      sin (cp^y + cp2>u - 91)V  - a) 

B, =  
C1,L  sln ftPl.L - el,L + a> sin >2,L - fl.L + a>   , , 

"^L   fins ff-, ,- s'1 n (CO, ,. 4- ro« , - 0, ,. 4- tY.l * ' 
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(6) 
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L " .  tan ß1?u 
(3J 

+ tan ß1;L 

tan ßi TT 

*U  -LtaaßljL <"' 

T =F      sin (ßx n + ß2tü) 
HJ   U Bin ß^u ein {ß2}U - 82)V +  a) 

sin (ß1>L + ß2|L)  

h, -Fh  sin £lfL  sin (ß2^L - 82^L - a) 

where 

D   distance from sh°ck intersect ion to inner turning corner 

F   distance-from intersection of expansion waves to inner turning 
comer 

L.   distance from inner turning corner to intersection of expansion 
wave with biplane surface 

In each case ß is the angle that the Mach lines make with the free- 
stream direction; that is, it is the Mach angle plus the angle which 
the local flow makes with the free-stream direction. Because the 
flow'direction changes 1° through each Mach line, the expansion process 
must be followed quite carefully to determine the correct values of ß 
to use in equations (3) to (6). When more Mach lines emanate from one 
of the airfoils, supplementary Mach lines may be assumed to emanate 
from the opposite airfoil in order that the bending points of the 
excess lines may be determined from equations (3) to (6). 

When the intercepts of the Mach lines on the airfoil surfaces are 
known, the aorodynamic coefficients per unit span are obtained by a 
summation of pressures over the surfaces. 

The course of the expansion may be clarified by studying the 
example of figure 2. Here the values of  $ to be used in figure 4 
and the direction of the flow }\   are indicated in each region. The 
conditions MQ = 2.0, 61 „ = 82jTJ =  7°, 9lfL =  62)L  = 103,  and 
a = 3° were assumed for zhlB  sketch. 
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The analytical method just described is useful only when the 
shocks from the leading edges intersect the opposite airfoil at the 
inner turning corner. If the coefficients for other cases are 
desired, a graphical integration must he made or some other analytical 
expressions derived. Graphical integration was used in the present 
investigation to determine the effect of varying the Mach number while 
a fixed biplane spacing was maintained and to determine the coeffi- 
cients for the convex-section biplane and for the single airfoil with 
shock-reflecting surface. 
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